

(An Autonomous Institution) (Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A+ Grade | Certified by ISO 9001:2015) Periyanaickenpalayam, Coimbatore – 641020

GE3151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

QUESTION BANK

I SEMESTER

R2021

(Common to CSE, CSE(CS), IT & R&A)

PREPARED BY	VERIFIED BY	APPROVED BY

UNIT-I

COMPUTATIONAL THINKING AND PROBLEM SOLVING

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

S.No	Questions	СО	BTL	Marks			
	PART-A						
1	What is an algorithm?	1	1	2			
2	What are the properties of algorithm?	1	1	2			
3	What are the properties of algorithm?	1	1	2			
4	What is a function?	1	1	2			
5	Define a flowchart.	1	1	2			
6	Compare machine language, assembly language and high-level language.	1	2	2			
7	Define is recursion with an example.	1	1	2			
8	What are advantages and disadvantages of recursion?	1	1	2			
	PART-B		1				
1	What are the building blocks of an algorithm? Explain in detail.	1	2	16			
2	Draw a flow chart to accept three distinct numbers, find the greatest and print the result.	1	2	16			
3	Write a program to find the minimum number in a list.	1	2	16			
4	State the Towers of Hanoi problem .Outline a solution to the Towers of Hanoi problem with relevant diagrams.	1	2	16			

UNIT-II

DATA TYPES, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

S.No	Questions	CO	BTL	Marks		
	PART-A					
1	What is meant by interpreter?	2	1	2		
2	List down the basic data types in Python.	2	1	2		
3	Define keyword and enumerate some of the keywords in Python.	2	1	2		
4	Define an expression with example.	2	1	2		
5	What do you mean by an operand and an operator?	2	1	2		
6	Outline the logic to swap the content of two identifiers without using third variable.	2	1	2		
7	What is meant by rule of precedence? Give the order of precedence	2	1	2		
8	List down the different types of operator.	2	1	2		
	PART-B		J			
1	Illustrate values and different standard data types with relevant examples.	2	2	16		
2	What are the two modes of operation in python? Analyze the differences between them	2	2	16		
3	Briefly explain the different types of operators and their function with suitable example.	2	2	16		
4	(i). Write a python program to check whether a given year is a leap year or not.(ii). Write a python program to circulate the values of n variables.	2	2	16		

UNIT-III

CONTROL FLOW, FUNCTIONS, STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

S.No	Questions	СО	BTL	Marks			
	PART-A						
1	What are the different types of operators?	3	1	2			
2	Explain modulus operator with example.	3	2	2			
3	Comment with an example on the use of local and global variable with the same identifier name.	3	1	2			
4	Explain 'for loop' with example.	3	2	2			
5	What are chained conditionals?	3	1	2			
6	What is range() function?	3	1	2			
7	What is a break statement?	3	2	2			
8	What is dead code?	3	1	2			
	PART-B	L					
1	List the three types of conditional statements and explain them.	3	2	16			
2	Write a python program to find the factorial of the given number with recursion and without recursion.	3	2	16			
3	Write a short note on operations which are performed on strings in python and write a python script.	3	2	16			
4	Write a user defined Python program to determine the GCD.	3	2	16			

UNIT-IV

LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

S.No	Questions	СО	BTL	Marks			
	PART-A						
1	What is a list?	4	1	2			
2	Mention any 5 list methods.	4	1	2			
3	State the difference between lists and dictionary.	4	1	2			
4	What is aliasing and cloning in List? Give an example.	4	1	2			
5	What is List mutability in Python? Give an example.	4	1	2			
6	Define key-value pairs.	4	1	2			
7	Define dictionary with an example. And What is mapping?	4	1	2			
8	How list differs from tuple.	4	2	2			
	PART-B		5				
1	Name the operations that can be performed on a List and outline any four with Example.	4	2	16			
2	Discuss in detail about list methods and list loops with examples.	4	2	16			
3	Define dictionary in Python. Do the following operations on dictionaries. (i). Initialize two dictionaries with Key and Value pair. (ii). Merge two dictionaries and create a new dictionary using single Expression. (iii). Find same Key in two dictionaries.	4	2	16			
4	What is tuple in python? How does it differ from list?	4	2	16			

UNIT-V

FILES, MODULES, PACKAGES

Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

S.No	Questions	СО	BTL	Marks			
	PART-A						
1	What is a text file?	5	1	2			
2	What are the two parts in an error message?	5	1	2			
3	What are the different file operations?	5	1	2			
4	What is a pickle?	5	1	2			
5	What are modules?	5	1	2			
6	What is a package?	5	1	2			
7	What is an exception?	5	1	2			
8	How do you use command line arguments to give input to the program?	5	2	2			
	PART-B						
1	Explain about the file reading and writing operations using format operator with python code.	5	2	16			
2	What are modules in python? How will you import them? Explain the concept by creating and importing a module	5	2	16			
3	Write a python program to count number of lines, words and characters in a text file.	5	2	16			
4	Explain how exceptions are handled in python with necessary examples.	5	2	16			

(An Autonomous Institution) (Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A+ Grade | Certified by ISO 9001:2015) Periyanaickenpalayam, Coimbatore – 641020

CY3151 ENGINEERING CHEMISTRY

UNIT 1 WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, fluoride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming & foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

Q.No	Question	СО	BTL	Marks			
	PART A						
1.	Define hardness. How is it classified?	1	1	2			
2.	What are BOD and COD?	1	1	2			
3.	What is break point chlorination?	1	1	2			
4.	Define desalination.	1	1	2			
5.	Name any two salts that cause temporary hardness.	1	1	2			
6.	Soft water is not demineralised water whereas demineralised water is soft water – Justify.	1	3	2			
7.	What is reverse osmosis (RO)?	1	1	2			
8.	Compare internal conditioning with external conditioning.	1	2	2			
	PART B						
1.	(i) Differentiate scales and sludges.	1	4	8			
	(ii) Examine the boiler corrosion in detail.	1	4	8			
2.	(i) Outline the following terms(a) Priming and Foaming(b) Caustic embrittlement	1	4	8			
UNITED INSTITUTE OF TECHNOLOGY 2							

	(ii) With a neat diagram describe the reverse osmosis method for the desalination of brackish water.	1	4	8
3.	Explain the demineralization or ion exchange process with neat diagram and reactions.	1	2	16
4	Explain with a neat sketch the various steps in the treatment of water for municipal supply.	1	3	16

UNIT2 NANOCHEMISTRY Basics: Distinction between molecules, nanomaterials and bulk materials; Size- dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.					
Q.No	QUESTION	СО	BTL	Marks	
	PART-A				
1. Di	stinguish between bulk particles and nano particles.	2	4	2	
2. W	hat is magic number?	2	1	2	
3. De	fine electro spinning.	2	1	2	
4. Lis	t out any four nano materials.	2	1	2	
5. Me	ntion two applications of nano materials in energy.				
	hat is the basic principle involved in solvothermal synthesis of nano aterials.	2 2	1 1	2 2	
7. M	ention some uses of carbon nano tubes.	2	1	2	
8. Li	st out two applications of nano materials in catalysis.	2	1	2	

PART B

1.	(i) Define the terms: nanorods, nanotubes, nanowires and nanoclusters.(ii) Explain any eight applications of nano materials in various fields.	2 2	1 1	8 8
2.	Explain about size dependent properties of nano materials.	2	1	16
3.	Discuss the CVD and laser ablation methods for the synthesis of nanomaterials.	2	5	16
4	Describe the preparations of nano materials from Sol-gel and solvo thermal process.	2	5	16

UNIT-3

PHASE RULE AND COMPOSITES

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process. Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites definition and examples.

Q.NO) QUESTION	CO	BTL	Marks
	PART-A			
1.	State phase rule.	3	1	2
2	Define degree of freedom and components of the system with an example.	3	1	2
3.	What is meant by triple point and eutectic point?	3	1	2
4.	What is matrix phase?	3	1	2
5.	Define a composite.	3	1	2
6.	Mention the characteristics of FRP.	3	1	2
7.	What are hybrid composites?	3	1	2
	PART-B			
1.	Explain the properties and uses of metal-matrix composite.	3	2	16
2.	How to construct the phase diagram using cooling curve.	3	2	16

3.	Elucidate a neat phase diagram and explain Pattinson's process through Pb-Ag system.	3	2	16
4.	Write notes on (i) Ceramic matrix composites (ii) Hybrid composites.	3	3	16

UNIT-4 FUELS AND COMBUSTION

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO2 emission and carbon footprint.

Q.NO	QUESTION	СО	BTL	Marks
	PART-A			
1.	Differentiate caking coal and coking coal?	4	2	2
2	Define octane number.	4	1	2
3.	Distinguish between HCV and LCV.	4	2	2
4.	Define spontaneous ignition temperature.	4	1	2
5.	State the characteristics of a good fuel.	4	1	2
6.	Suggest any two methods of reducing carbon emission.	4	1	2
7.	Mention the Dulong's formula.	4	1	2
8.	Why should leaded petrol not be used?	4	2	2

PART-B

1.	Demonstrate Otto-Hoffman process of conversion of coal to coke and the recovery of byproducts.	4	3	16
2.	Explain the analysis of flue gas by Orsat's apparatus.	4	2	16
3.	Illustrate how synthetic petrol is manufactured by Bergius process.	4	2	16
4.	What is meant by bio-diesel? How is it obtained? Explain its advantages and disadvantages.	4	2	16

UNIT-5 **ENERGY SOURCES AND STORAGE DEVICES**

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ionbattery; Electric vehicles - working principles; Fuel cells: H2-O2 fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

Q.NO	QUESTION	СО	BTL	Marks
	PART-A			
1.	Define nuclear fission with example.	5	1	2
2	Differentiate fissile and fertile nucleides.	5	1	2
3.	Define geo-thermal energy.	5	1	2
4.	Will the emf of battery vary with size? Give reason for your answer.	5	1	2
5.	Mention some important applications of super capacitors.	5	1	2
6.	Write the charging and discharging reaction of lead accumulator.	5	1	2
7.	Determine the disadvantages of fuel cell.	5	1	2
8.	Give cell representation lead acid battery	5	1	2

UNITED INSTITUTE OF TECHNOLOGY

10

	PART-B			
1.	Analyze the components and its functions of a Light water nuclear reactor with a suitable diagram	5	5	16
2.	Describe the construction and working of H2-O2 fuel cell with neat diagram	5	2	16
3.	Describe the construction, principle, working of lead acid storage battery. Give its advantages and disadvantages.	5	2	16
4.	Write notes on recent developments in solar cell materials.	5	3	16

-----END-----

(An Autonomous Institution) (Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A+ Grade | Certified by ISO 9001:2015) Periyanaickenpalayam, Coimbatore – 641020

MA3151

Matrices and Calculus

UNIT 1 MATRICES

Eigen values and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms–Applications:Stretchingofanelasticmembrane.

Q.No	Question	CO	BTL	Marks
	PART A			
1.	Find the characteristic polynomial of $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.	1	1	2
2.		1	1	2
	The product of two Eigenvalues of the matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 16. Find			
2	the third Eigenvalue.	1	1	2
3.	If $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ then find the eigen values of A ⁻¹ .	1	1	2
4.	$\begin{pmatrix} 3 & 10 & 5 \end{pmatrix}$	1	1	2
	If 2 and 3 are the eigenvalues of $A = \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$. Find the eigenvalues of			
	A^{-1} and A^3 .			
5.	State Cayley – Hamilton Theorem.	1	1	2
6.	Write down the matrix for the following quadratic form: $2x_1^2 - 2x_2^2 + 4x_3^2 + 2x_1x_3 - 6x_1x_3 + 6x_2x_3$	1	1	2
7.	Prove that $x^2 - y^2 + 4z^2 + 4xy + 2yz + 6xz$ is indefinite.	1	1	2
8.	Discuss the nature of the Q.F. $2x^2 + 6y^2 + 2z^2 + 8xz$ without reducing them to Canonical form.	1	1	2
	PART B			

1.	(i) Find the Eigen values and Eigen vectors of the following matrices $ \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix} $	1	5	8
	(ii) Using Cayley -Hamilton theorem, find A^{-1} if $A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$	1	3	8
2.	(i) Find the Eigen values and Eigen vectors of the following matrices $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.	1	5	8
	(ii) Using Cayley-Hamilton theorem for $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Hence find its	1	3	8
3.	inverse. Diagonalize the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ by orthogonal transformation.	1	5	16
4	Reduce the quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1$ to the	1	5	16
5	canonical form through orthogonal transformation and find its nature. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 - 12xy - 8yz + 4zx$ to the canonical form by an orthogonal transformation. Also find its rank, index, signature and nature of the quadratic form.	1	5	16
	UNIT2 DIFFERENTIAL CALCULUS			
	Representationoffunctions-Limitofafunction-Continuity-Derivatives- Differentiationrules(sum,product, quotient, chain rules) - Implicit differentiation -Applications:Maximaand Minima offunctionsofone			
Q.NO	QUESTION	CO	BTL	Marks
	PART-A			
	UNITED INSTITUTE OF TECHN	OLOG	¥ 3	

1.	Define odd and even functions with examples.	2	1	2
2.	Define limit of a function.	2	1	2
3.	Evaluate $\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$, if it exists.	2	2	2
4.	Sketch the graph of the function $f(x) = \begin{cases} x^2; if -2 \le x \le 0\\ 2-x; if \ 0 < x \le 2 \end{cases}$	2	1	2
5.	Find $\frac{dy}{dx}$, $ify = xe^x sinx$.	2	2	2
6.	Find $\frac{dy}{dx}$, $ify = \frac{x^2 - 1}{x^2 + 1}$.	2	2	2
7.	Find the domain of the function $f(x) = \sqrt{5x+10}$.	2	2	2
8.	Evaluate $\lim_{x \to 5} (2x^2 - 3x + 4).$	2	2	2
	PART B			
1.	(i) For what value of the constant c is the function f continuous at $(-\infty, \infty)$ $f(x) = \begin{cases} cx^2 + 2x; x < 2\\ x^3 - cx : x \ge 2 \end{cases}$	2	3	8
2.	Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3,3) and at what point the	2	3	8
3.	tangent line horizontal in the first quadrant. Find the absolute maximum and absolute minimum values of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ on the interval [-2,3].	2	5	16
4	If $f(x) = x^4 - 2x^2 + 3$, then (i) find the critical points of f? (ii)On what interval is f increasing or decreasing? (iii) At what points, if any, does f assume local maximum and minimum values? (iv)Find intervals of concavity and the inflection points.	2	5	16
5	Find the maximum and minimum values of $2x^3 - 3x^2 - 36x + 10$.	2	5	16

	UNIT3 FUNCTIONSOFSEVERALVARIABLES						
	Partialdifferentiation–HomogeneousfunctionsandEuler'stheorem–Totalderivative– Changeofvariables –Jacobians – Partial differentiation of implicit functions – Taylor's series for functions oftwo variables –Applications:Maxima and minima of						
	functions of two variables and Lagrange'smethodofundeterminedmultipliers.	u OI					
Q.NO	QUESTION	CO	BTL	Marks			
	PART-A						
1.	If $u = \sin^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\tan u$.	3	1	2			
2	If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$, find $\frac{\partial(x, y)}{\partial(u, v)}$.	3	1	2			
3.	If u=2xy, v = x ² -y ² , x = r cos θ , y = r sin θ then compute $\frac{\partial(u, v)}{\partial(r, \theta)}$.	3	1	2			
	If $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$.	3	1	2			
5	If $u = f(y - z, z - x, x - y)$ find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.	3	1	2			
6.	Prove that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if $f = x^3 + y^3 + z^3 + 3xyz$.	3	1	2			
7.	If $z = x^2 + y^2$, and $x = t^2$, $y = 2at$, find $\frac{dz}{dt}$.	3	1	2			
	PART-B						
1.	If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{du}{dt}$.	3	2	8			
2.	If $x + y + z = u$, $y + z = uv$, $z = uvw$ prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$.	3	2	8			
	UNITED INSTITUTE OF TECHNOLOGY 5						

3.	If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	3	2	8
4.	Expand $e^x \log(1+y)$ in powers of x and y upto terms of third degree using Taylor's theorem.	3	3	16
5.	Expand $e^x \cos y$ at $(0, \pi/2)$ up to the third term using Taylor's series.	3	3	8
6.	Find the extreme value of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$.	3	3	0
7.	A rectangular box, open at the top, is to have a volume of 32cc. Find the dimensions of the box, that requires the least materials for its construction.	3	3	8 16
	UNIT4 INTEGRALCALCULUS			
	Definite and Indefinite integrals - Substitution rule - Techniques of Integrat Integration by parts, Trigonometric integrals, Trigonometric substitution Integration of rational functions by partial fraction, Integration of irration functions - Improper integrals - Applications: Hydrost forceand pressure, moments and centres of mass.	ons, onal		
Q.N	O QUESTION	СО	BTL	Marks
-				
	PART-A			
1.		4	1	2
	PART–A Find the derivative of the following fun $f(x) = \int_{1}^{x^{2}} cost dt$ Find the derivative of the following fun $\int_{0}^{\pi} f(x) dx$ where $f(x) =$	4		2 2
1.	PART–A Find the derivative of the following fun $f(x) = \int_{1}^{x^{2}} \cos t dt$		1	
1. 2	PART-A Find the derivative of the following fun $f(x) = \int_{1}^{x^{2}} cost dt$ Find the derivative of the following fun $\int_{0}^{\pi} f(x) dx$ where $f(x) = \begin{cases} sinx, & if \ 0 \le x \le \frac{\pi}{2} \\ cosx, & if \ \frac{\pi}{2} \le x \le \pi \end{cases}$	4	1	2
1. 2 3.	PART-A Find the derivative of the following fun $f(x) = \int_{1}^{x^{2}} cost dt$ Find the derivative of the following fun $\int_{0}^{\pi} f(x) dx$ where $f(x) = \begin{cases} sinx, & if \ 0 \le x \le \frac{\pi}{2} \\ cosx, & if \ \frac{\pi}{2} \le x \le \pi \\ Evaluate \int \frac{x^{3}+2x+1}{x^{4}} dx. \end{cases}$	4	1 1 1	2
1. 2 3. 4.	PART-A Find the derivative of the following fun $f(x) = \int_{1}^{x^{2}} cost dt$ Find the derivative of the following fun $\int_{0}^{\pi} f(x) dx$ where $f(x) = \begin{cases} sinx, & if \ 0 \le x \le \frac{\pi}{2} \\ cosx, & if \ \frac{\pi}{2} \le x \le \pi \\ Evaluate \ \int \frac{x^{3}+2x+1}{x^{4}} dx. \end{cases}$ Evaluate $\int \frac{1}{1-cosx} dx$.	4	1 1 1	2 2 2

7.	Evaluate $\int sin2xcos3x dx$	4	1	2
8.	Evaluate $\int sin^3 2x dx$	4	1	2
1.	PART–B Evaluate $\int_0^3 (x^2 - 2x) dx$ by using Riemann sum by taking right end points as the sample points.	5 4	5	8
2.	Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ (ii) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$	4	5	8
3.	Evaluate $\int \frac{10}{(x-1)(x^2+9)} \mathrm{d}x$	4	5	8
4.	Prove that $\int_{0}^{\pi} \frac{d\theta}{5 + 3\cos\theta} = \frac{\pi}{4}$	4	5	8
4.	Evaluate $\int \cos^n x dx$ by using integration by parts.	4	5	8
5.	Use partial fraction technique, evaluate $\int \frac{3x+1}{(x-1)^2(x+3)} dx$	4	5	16
	UNIT5			
	INTEGRAL CALCULUS Double integrals – Change of order of integration – Double integrals in portion coordinates – Areaenclosed by plane curves – Triple integrals – Volume of solid Change of variables in double andtripleintegration Applications:Momentsandcentresofmass,momentofinertia.	s –		
Q.NO	QUESTION	CO	BTL	Marks
	PART-A			
1.	Evaluate $\int x \sin x dx$ by using integration by parts.	5	1	2
2	Evaluate $\int_{1}^{a} \int_{2}^{b} \frac{1}{xy} dx dy$.	5	1	2
	UNITED INSTITUTE OF TECHNO	DLOG	Y 7	

3. Evaluate
$$\int_{0}^{52} (x^2 + y^2) dx dy.$$
5. 1 2
4. Sketch the region of integration in
$$\int_{0}^{1x} dy dx.$$
5 1 2
5. Evaluate
$$\int_{0}^{12} \int_{0}^{3} xyz dx dy dz$$
6. Evaluate
$$\int_{0}^{12} \int_{0}^{3} dx dy dz$$
7. Evaluate
$$\int_{0}^{3} \int_{0}^{2} e^{x^{1}y^{1/2}} dx dy dz$$
7. Evaluate
$$\int_{0}^{3} \int_{0}^{2} \frac{1}{1} x y^{2} z dx dy dz$$
7. (i) Use partial fraction technique, evaluate
$$\int \frac{1+6x}{(4x-3)(2x+5)} dx$$
(ii) Evaluate
$$\int x^{3} sin 2x dx$$
 using integration by parts.
7. Using double integral find the area bounded by the parabolas $y^{2} = 4ax$ and 5 3 8

	END			
5.	Find the volume of the tetrahedron bounded by the coordinate planes and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$	5	5	16
-	Find the veloces of the tetrahedree hour ded by the coordinate planes and	~	~	16
4.	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration	5	5	16
3.	Using double integral find the area bounded by $y = x$ and $y = x^2$.	5	3	8
2.	Using double integral find the area bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	5	3	8
	(ii) Evaluate $\int x^3 \sin 2x dx$ using integration by parts.			
1.	(i) Use partial fraction technique, evaluate $\int \frac{1+6x}{(4x-3)(2x+5)} dx$	5	5	16